Performance and upgrade of the CMS electromagnetic calorimeter trigger for Run II

Jean-Baptiste Sauvan
On behalf of the CMS Collaboration

CALOR, Giessen, 08/04/14
Introduction

- Given the luminosity and pile-up conditions during LHC-Run 1 (2010-2012), the current system has performed extremely well.

- Post LS1: running conditions beyond specifications:
 - $> 10^{34}$ cm$^{-2}$s$^{-1}$ and pile-up (PU) \approx 45 or even higher
 - Maximum level-1 trigger rate of 100 kHz: energy thresholds would need to be increased significantly with the current system
 - This would be detrimental for physics

- Upgrade of the level-1 trigger is required to maintain and improve the current performance in these intense conditions [CMS-TDR-12]

- Two-stage approach to optimise reliability and performance:
 - 2015-2016: Commissioning
 - In parallel to operating Run-1 system
 - 2016 \rightarrow LS3: used for physics
Two stages for data rate reduction of $\approx 10^5$

- **Level 1 trigger**
 - Coarse data from calorimeters and muon systems
 - Custom made hardware

- **High Level Trigger**
 - Partial reconstruction of the event with full sub-detector readout
 - Farm of computers

Clock frequency (40 MHz)

L1 trigger (max. output 100 kHz)

HLT (300-600 Hz in 2012) (up to 1kHz in 2015)
CMS electromagnetic calorimeter

- Homogeneous ECAL calorimeter
 - Made of PbWO$_4$ crystals
 - Barrel (|η|<1.48)
 - Endcaps (1.48<|η|<3)

- L1 trigger primitive
 - Trigger tower (TT)
 - = matrix of 5x5 crystals

ECAL calorimeter overview

ECAL trigger tower (TT)
Energy = \sum 5x5 crystals
Run-1 level-1 calorimeter trigger path

Data reduction

Trigger Primitives Generator (TPG)

Regional Calorimeter Trigger (RCT)

Global Calorimeter Trigger (GCT)

ECAL, HCAL trigger towers
8 bits E_T + fine grain bit

Electron/photon (e/γ) identification,
4x4 energy Sums

One region = 4x4 TT
Output objects per crate (16 regions):
4 highest isolated e/γ
4 highest non-iso e/γ
E_T sums

Objects per event:
4 isolated e/γ
4 non-iso e/γ
4 forward, central, τ jets

L1 accept

Global Trigger (GT)

L1 muons
Minimum granularity = trigger tower (TT)

- ECAL energy = \sum 5x5 crystals

L1 e/γ candidate = \sum 2 Trigger Towers

Hadronic veto: $H/E < 5\%$ for EM showers

“Fine Grain” veto: 5x2 crystal strip $E_T > 90\%$

Isolation “quiet corner”: \sum 5 TT < 3.5 GeV

Candidate Energy:

- Max E_T of 4 Neighbors
- Hit + Max $E_T >$ Threshold

Sliding window centered on all ECAL/HCAL trigger tower pairs

Position of an e/γ object:

RCT region

- \sum 4x4 trigger towers

Position of an e/γ object
Why a new architecture is needed?

- Without any change, substantial increase in trigger thresholds would be required by the end of Run 2
 - Detrimental impact on the physics acceptance (e.g., $H \rightarrow ZZ \rightarrow 4l$)

- And given the lack of pile-up corrections in the algorithms, isolation efficiency decreases with increasing number of interactions

- Refined algorithms which are pile-up aware need a new architecture
 - Full calorimeter view at trigger tower level (higher bandwidth links) and computing power (faster & larger FPGA)

Rates [kHz] (CMS-TDR-12)

<table>
<thead>
<tr>
<th>Examples of trigger thresholds</th>
<th>Typical 2012. $BS^* = 50$ ns. $PU=15. L = 0.4 \times 10^{34}$ cm$^{-2}$s$^{-1}$</th>
<th>$\sqrt{s} = 14$ TeV. $BS^* = 50$ ns. $PU=50. L = 1.1 \times 10^{34}$ cm$^{-2}$s$^{-1}$ (extrapolated with MC sample)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single iso e/γ (18 GeV)</td>
<td>6.3</td>
<td>40</td>
</tr>
<tr>
<td>Double e/γ (13, 7 GeV)</td>
<td>5.4</td>
<td>47</td>
</tr>
</tbody>
</table>

* BS = Bunch Spacing

Total bandwidth of 100 kHz!
Run-2 level-1 calorimeter architecture

- μTCA crates (replacing VME)
 - High speed serial links, more bandwidth
- Trigger processing cards based on Xilinx Virtex-7 FPGA
 - **Layer 1**: Data formatting, pre-processing
 - **Layer 2**: Object reconstruction and identification
 - Large number of optical inputs and outputs (2 x 72@ 10.3 Gb/s)
 - Full individual events at tower level on single FPGA → **HLT at L1**!

Currently being installed for commissioning in parallel with current system in 2015

Current L1 Trigger System

- oSLB=optical Serial Link Board
 - 4.8 Gb/s
 - Replacing SLB (4 x 1.2 Gb/s)
 - 2 outputs for path duplication
- oRM=optical Receiver Mezzanine
 - Replacing RM

Upgrade L1 Trigger System
Run-2 level-1 calorimeter architecture

- oSLBs have been produced and the testing is now ongoing on TCC boards (Trigger Concentrator Cards) in the experiment service cavern.

- The algorithms are being implemented as firmware. First version are being tested in the Layer 2 cards.

TCC (Trigger Concentrator Card)
Future e/γ algorithm

Dynamic clustering with shape constraints

- Fine grain position using shower shape
- Seed tower
- Neighbor towers
- Better energy containment
 - Showering electrons, converted photons
- Small impact of pile-up

Examples of cluster shapes

- e/γ like
- jet like

Isolation (ECAL+HCAL)

\[\Sigma E_T (9 \times 5 \text{ TT} - \text{e/γ footprint}) < \text{cut}(PU, \eta) \]

- HCAL footprint
- ECAL footprint
- \(\Sigma E_T \) in isolation region

Use an isolation \(E_T \) cut that is a function of pile-up

- Use the number of trigger towers above a threshold as pile-up estimator
- Tuned for constant 90% efficiency vs \(\eta \) and PU

Discriminate e/γ against jets

Veto clusters with specific (jet-like) patterns
Performance comparison (1/2)

- Comparison between Run-1 trigger and upgrade algorithm
- Tower granularity: much improved position resolution
 - For correlation between objects
- Dynamic clustering → ~30% better energy resolution
 - Recover showered electron energy
 - Sharper efficiency turn-on

Z → ee, Data 2012, Efficiency vs offline E_T for 20 GeV L1 threshold

- Barrel
- Endcaps
New algorithm allows improved e/γ vs jet discrimination without isolation
- Using cluster shapes: rate reduction with negligible efficiency loss (few %)

Isolated e/γ triggers: preliminary studies show a factor of 2 rate reduction relative to current algorithm, with similar signal efficiencies

“95% threshold”:
- Offline E_T where trigger reaches 95% of the plateau efficiency (see previous slide)
- The L1 threshold corresponding to a given 95% threshold depends on the L1 energy scale and resolution
Conclusion

- New L1 calorimeter trigger architecture and algorithms needed
 - To deal with running conditions in phase 1
- Design using fast optical links and modern FPGAs has been developed
 - High level trigger functionalities at L1!
- Novel algorithms for e/γ make use of the new hardware capabilities
 - The goal is to extract the maximum information from the events
 - Locally, at the trigger tower level. And globally, for pile-up estimation.
 - Position resolution improved by more than a factor of 4
 - Energy resolution improved by 30%
 - Factor 2 rate reduction for isolated objects (with constant 90% efficiency vs PU)
 - Strong activity on these algorithms at the moment
 - Room for further improvements
- The new trigger will be commissioned with the first Run-2 data (2015-2016)
- And will be used for physics by the end of Run-2 until LS3 (~2023)