TIMING PERFORMANCE OF THE CMS ECAL AND PROSPECTS FOR THE FUTURE

Daniele del Re
Sapienza Università & INFN Sezione Roma
On behalf of the CMS collaboration
TIME MEASUREMENT USING CMS ECAL

- **Lead tungstate** has fast scintillation response
 - about 80% of the light emitted in 25 ns
- Shaping time (~40 ns) and sampling rate (40 MHz) allows for excellent time resolution
- Each pulse shape **made of 10 samples**
- Time extracted from **ratios of consecutive samples**
 - first three samples not used (pedestal determination)
- **Uncertainties** from noise fluctuations, pedestal subtraction, and 12 bit truncation
 - in time extraction correlations included
Precise Time Determination: Motivations

- Precise ECAL time determination crucial in many respects:
 1) energy determination require at least O(1 ns) resolution
 2) out of time background rejection
 3) beyond SM particle identification

- At test beam (TB) in 2008 intrinsic ECAL time precision measured to be better than 50 ps
 \[\sigma(t) = \frac{N}{A_{eff}/\sigma_n} \otimes C \text{: N(oise) term 30 ns and C(onstant) term 20 ps} \]

- For collisions several effects worsen precision
 - run by run variations, inter-calibration, effects vs energy, radiation, B field, tracker material, ...

- Need to evaluate performance @ collisions
 - test beam results reproduced? calorimeter calibrated vs time?

- Understand limiting factors for O(10 ps) resolution crucial to design a possible ultrafast ECAL for HL-LHC future upgrade
MEASURING TIME RESOLUTION: METHODS

From Z electrons (barrel EB)
- Time of electron = highest crystal energy deposit of electron
- **Compare time of two electrons** after accounting for time of flight differences due to primary vtx position

From photon-like ECAL deposits (barrel EB)
- cluster shape requirements to look like a real em deposit
- no isolation requirements (π⁰ are fine) applied
- **Compare time of neighbouring crystals** of ECAL cluster with similar energy
- Similar to TB analysis (where electrons were used)
FEATURES AND LIMITATIONS

• PROs:
 – determining full detector performance (crystals far each other)

• CONs:
 – low statistics
 – shower development effects

• PROs:
 – good for determining intrinsic time measure performance
 – many systematics cancel out

• CONs:
 – not sensitive to effects dependent on geometry/segmentation/electronics (crystals close each other)
• **Resolution** from gaussian fit of core of t_1-t_2 distribution
• Results are for 2011+2012 data (only barrel shown)
• Resolution vs **effective amplitude**
 - $A_{\text{eff}} = A_1 A_2 / \sqrt{A_1^2 + A_2^2}$
 - A_1 and A_2 amplitudes of the two crystals normalized to noise (corresponding to ~40 MeV)
• **Noise term** consistent with TB
• **Constant term** about 150 ps
 - value ok for almost every physics application
 - but far from TB results
• **Next step**: understand what’s causing worsening
Neighbouring Crystals: Results

- **Noise term** consistent with TB
- **Constant term** about 70 ps!
 - much closer to test beam results
 - clear difference between Z and neighboring crystals results

![Graph showing comparison between test beam and collisions results.](image)
SAME AND DIFFERENT READOUT

- Resolution checked when **crystals belong to same or different readout (RO) unit** (25 crystals)
 - check if worsening in resolution correlated with electronics
- Results show quite **different constant term** (67 ps vs 130 ps)
 - effect not yet fully understood and under investigation

\[
\sigma(t) = \frac{N}{A_{\text{eff}}/\sigma_n} \pm \sqrt{2C}
\]

- **same readout**
 - \(N = 35.1 \pm 0.6 \text{ ns} \)
 - \(C = 0.0668 \pm 0.0003 \text{ ns} \)
- **different neighboring readout**
 - \(N = 34.3 \pm 0.7 \text{ ns} \)
 - \(C = 0.1295 \pm 0.0003 \text{ ns} \)
STABILITY VS TIME AND PSEUDORAPIDITY

- Performance verified vs time (run) and pseudorapidity
 - both could reveal effects due to luminosity and radiation
- **Stable in both cases** (variations within 10-20%)
 - crystal time response not yet affected by radiation
 - calibration robust vs time
@ HL-LHC average number of **multiple interactions up to 140**

Issue for calorimetric quantities
- many hits saved per event (issues in trigger, reconstruction)
- extra pile-up (PU) hits degrade resolution of high-level objects
 - γ, e, Jets, MET, isolation quantities

Example: Jet Response
- 30-40% of Jet energy due to neutral particles
- *more than 70 GeV extra energy* in average for 140 PU
- subtracted but jet resolution degraded

➡ **Exploit ECAL time measurement to remove extra PU energy deposits**
Vertex Determination using Timing

- **O(ps) timing detector**
 - simulated and integrated with present ECAL and CMS reconstruction to study PU mitigation

- Different time resolutions investigated

- **Vertex determination** in low track multiplicity events ($H \rightarrow \gamma \gamma$)

- Vertex position from *constraint that both photons* originate from *same vertex*

- **$O(30 \text{ ps})$ time resolution $\Rightarrow < 1 \text{ cm}$ precision in z_{vtx} determination in forward region**
 - beam spot spread in z_{vtx} is now $\sim 6 \text{ cm}$

CMS Simulation Preliminary

$H \rightarrow \gamma \gamma$ events
both photons with $1.5 < |\eta(\gamma)| < 3$.

![Graph showing vertex resolution vs. time resolution](image-url)
ECAL Clean-up Using Timing

- **Effect of timing cut** on $\sum E_T^{ECAL}$ variable
 - sum of all ECAL hits with $E > 1$ GeV.
- O(30 ps) resolution detector simulated
- Require ECAL timing (time-of-flight subtracted) within a 90 ps window
- Most of the **PU extra energy gone**
 - able to almost recover no PU conditions
- Timing-based selection looks promising for high PU environment
CONCLUSIONS

• ECAL timing performance @ p-p collisions determined using electrons and photons

• Precise time determination achievable with present CMS ECAL
 – 70 ps resolution constant term for neighbouring crystals
 – 150 ps resolution constant term on full ECAL detector
 – much better than design (O(ns) resolution)

• Results stable vs time and pseudorapidity
 – Some readout unit-dependent effect under investigation

• An ultra-precise timing ECAL detector (resolution better than 30 ps) can play important role for HL-LHC
 – ps effects in time distribution system to be carefully considered

• Pile-up rejection based on timing looks promising to reduce ECAL occupancy
 – more details in Adi Bornheim’s talk on Thursday
STABILITY VS TIME AND PSEUDORAPIDITY

- Performance verified vs time (run) and pseudorapidity
 - this is for crystals in different RO units
• Performance verified **vs RO unit**
 – this is for crystals in same RO unit
PILE-UP JET-ID USING TIMING

- **Pile-up jet removal** based on **precision ECAL timing** compared to track-based and shape-based algorithms presently used in CMS
- **O(10 ps)** timing detector is simulated with present ECAL geometry
- **Time corresponds to time of most energetic crystal of a jet**
- **Pile-up removal promising**

![CMS Simulation Preliminary](image1)

![CMS Simulation Preliminary](image2)