Rare decays at LHCb

Siim Tolk (NIKHEF, Amsterdam) on behalf of the LHCb Collaboration

Bormio 2014
Rare decays at LHCb

Siim Tolk (NIKHEF, Amsterdam) on behalf of the LHCb Collaboration

Other talks from LHCb:

Monday (11:00)
LHCb overview (Ulrich Uwer)

Thursday (18:40)
CP violation at LHCb (Antonio Romero Vidal)

Bormio 2014
Flavour Changing Neutral Currents in meson decays:

- $c \rightarrow u$
- $s \rightarrow d$
- $b \rightarrow d$
- $b \rightarrow s$

All studied @ LHCb! Covered today
• Tree level diagrams forbidden in SM (GIM suppression)
• Main contributors: “W box” and “electroweak penguin”:

- Sensitive to new particles with masses \(\sim O(100 \text{ TeV}) \)
Standard Model
LHCb

• An event recorded by LHCb
An event recorded by LHCb

- Excellent precision:
 - Momentum resolution: $\frac{\Delta p}{p} \sim 0.4\%$ at 5 GeV/c to 0.6% at 100 GeV/c
 - Impact parameter resolution: $20\,\mu m$ for high-pT tracks
 - Invariant mass resolution
 - Particle identification: $\sim 97\%$ for $1-3\% \pi \rightarrow \mu$ mis-id probability

- Very efficient trigger:
 - $\sim 90\%$ for dimuon channels
 - $\sim 30\%$ for multi-body hadronic final states
Rare decays: 3 groups

Radiative

$B_{u}^{\pm} \rightarrow (K_{res}^{*\pm})\gamma$

Semi-leptonic

$B_{d}^{0} \rightarrow K^{*}\mu^{+}\mu^{-}$

Leptonic

$B_{s,d}^{0} \rightarrow \mu^{+}\mu^{-}$
Rare decays: 3 groups

Radiative

$B_{u}^{\pm} \rightarrow (K_{res}^{*\pm})\gamma$

Semi-leptonic

$B_{d}^{0} \rightarrow K^{*}\mu^{+}\mu^{-}$

Leptonic

$B_{s,d}^{0} \rightarrow \mu^{+}\mu^{-}$

• Many observables:

- $A_{CP}, A_{UD}, d(BR)/dE_{\gamma}$
- $A_{CP}, F_{L}, d(BR)/dq^{2}$
- $BR(B_{s,d}^{0} \rightarrow \mu^{+}\mu^{-})$

• Constraining many NP sensitive Wilson coefficients:

- $C_{7}^{(i)}, C_{8}^{(i)}$
- $C_{7}^{(i)}, C_{9}^{(i)}, C_{10}^{(i)}$
- $C_{10}^{(i)}, C_{S}^{(i)}, C_{P}^{(i)}$
Rare decays: 3 groups

Electroweak penguin

- **Radiative**
 \[B_{u}^{\pm} \rightarrow (K_{res}^{*\pm})^{\gamma} \]
- **Semi-leptonic**
 \[B_{d}^{0} \rightarrow K^{*} \mu^{+} \mu^{-} \]
- **Leptonic**
 \[B_{s,d}^{0} \rightarrow \mu^{+} \mu^{-} \]
The decay $B_{s,d}^0 \rightarrow \mu^+\mu^-$

LHCb: “First evidence for Bs to mumu!”

[PRl 110, 021801 (2013)]

$\sim 10,000 \times$
The decay $B_{s,d}^0 \rightarrow \mu^+ \mu^-$

- FCNC and helicity suppressed

- Purely leptonic final state

- The SM prediction (Buras et al. [arXiv:1303.3820])

$BR(B_d \rightarrow \mu^+ \mu^-) = (1.07 \pm 0.10) \times 10^{-10}$

$BR(B_s \rightarrow \mu^+ \mu^-) = (3.25 \pm 0.17) \times 10^{-9}$
The decay $B_{s,d}^0 \rightarrow \mu^+ \mu^-$

- FCNC and helicity suppressed

- Purely leptonic final state

- The SM prediction (Buras et al. [arXiv:1303.3820])

$$BR(B_d \rightarrow \mu^+ \mu^-) = (1.07 \pm 0.10) \times 10^{-10}$$
$$BR(B_s \rightarrow \mu^+ \mu^-) = (3.25 \pm 0.17) \times 10^{-9}$$

$$\times \frac{1 + A_{\mu \mu}^{\Delta \Gamma_s} \cdot \Delta \Gamma_s / 2 \Gamma_s}{1 - (\Delta \Gamma_s / 2 \Gamma_s)^2} = (3.56 \pm 0.18) \times 10^{-9}$$

Correction due to $\Delta \Gamma_s$

(De Bruyn et al. [PRD 86, 014027 (2012)])

- Theory error budget

![Error Budget Pie Chart]
The decay $B_{s,d}^0 \rightarrow \mu^+ \mu^-$

Analysis

Data sample

- 3fb$^{-1}$ integrated luminosity
- Reconstruction improved
- Dimuon mass signal region blinded

1) Identify signal like events
 - A loose muon pair selection
 - Separate combinatorial background with an (re-optimised) BDT
 - Based on the geometry and kinematics
 - Shape calibrated on the data

[doi:10.1103/PhysRevLett.111.101805]
[arXiv:1307.5024]
The decay $B_{s,d}^0 \rightarrow \mu^+ \mu^-$

Analysis

2) Extract the signal yield

- Mass PDF
 - Signal resolution taken from data
 - Partial reconstruction and mis-ID

\[B_{(s)}^0 \rightarrow h^+ h'^- \quad B_S^0 \rightarrow K^- \mu^+ \nu_\mu \]
\[\Lambda_b \rightarrow p\mu^- \nu_\mu \quad B^0 \rightarrow \pi^- \mu^+ \nu_\mu \]
\[B_{(s)}^{0,+} \rightarrow \pi^{0,+} \mu^+ \nu_\mu \]
\[B_c^+ \rightarrow J/\psi (\mu\mu) \mu^+ \nu_\mu \]

- Simultaneous mass fit in 8 BDT bins

[doi:10.1103/PhysRevLett.111.101805]
[arXiv:1307.5024]
The decay $B_{s,d}^0 \rightarrow \mu^+\mu^-$

Analysis

3) Normalize to **channels** with known BR's

\[\text{BR} = \frac{N_{B_{s,d}^0}^{\mu^+\mu^-}}{N_{\text{cal}}} = \alpha(s) \times \frac{f_{cal}}{f_{d(s)}} \]

\[\alpha(s) = \frac{\epsilon_{\text{cal}} \times \epsilon_{\text{TRIG}} \times \frac{f_{cal}}{f_{d(s)}}}{\epsilon_{\text{sig}} \times \epsilon_{\text{RE}} \times \epsilon_{\text{SEL}}} \]

[f_s/f_d uncertainty reduced from 7.8% to 5.8%]
The decay $B_{s,d}^0 \rightarrow \mu^+ \mu^-$

Results

LHCb results (3fb$^{-1}$):

$$BR(B_s \rightarrow \mu^+ \mu^-) = (2.9^{+1.1}_{-1.0}(\text{stat.})^{+0.3}_{-0.1}(\text{syst})) \times 10^{-9}$$
$$BR(B_d \rightarrow \mu^+ \mu^-) = (3.7^{+2.4}_{-2.1}(\text{stat.})^{+0.6}_{-0.4}(\text{syst})) \times 10^{-10}$$

CMS results (25fb$^{-1}$):

$$BR(B_s^0 \rightarrow \mu^+ \mu^-) = 3.0^{+1.0}_{-0.9} \times 10^{-9}$$
$$BR(B_d^0 \rightarrow \mu^+ \mu^-) = 3.5^{+2.1}_{-1.8} \times 10^{-10}$$

[doi:10.1103/PhysRevLett.111.101805]
[arXiv:1307.5024]

LHCb results (3fb$^{-1}$):

CMS results (25fb$^{-1}$):

[doi: 10.1103/PhysRevLett.111.101804]
[arXiv:1307.5025]
The decay $B_{s,d}^0 \rightarrow \mu^+ \mu^-$

Results

6) Combination: First observation!

$BR(B_s \rightarrow \mu^+ \mu^-) = (2.9 \pm 0.7) \times 10^{-9}$

$>5\sigma$

$BR(B_d \rightarrow \mu^+ \mu^-) = (3.6 \pm 1.6) \times 10^{-10}$

$<3\sigma$

Measured branching ratios are compatible with the SM expectations.
The decay $B_{s,d}^0 \rightarrow \mu^+\mu^-$

Implications

Before the LHC results

After the LHC results

Cartoon of plot from [D.Straub arXiv:1205.6094]

Cartoon of plot from [D.Straub arXiv:1205.6094]
Rare decays: 3 groups

Radiative

\[B^\pm_u \rightarrow (K^{*\pm}_{res})\gamma \]

Semi-leptonic

\[B^0_d \rightarrow K^* \mu^+ \mu^- \]

Leptonic

\[B^0_{s,d} \rightarrow \mu^+ \mu^- \]
The decay $B_u^{\pm} \rightarrow (K_{res}^{*\pm}) \gamma \rightarrow K^{\pm} \pi^{\mp} \pi^{\pm}$

Motivation

- Measured inclusive $BR(B^{\pm} \rightarrow K^{\pm} \pi^{\mp} \pi^{\pm} \gamma)$ agrees well with the SM
The decay $B_u^\pm \rightarrow (K_{res}^*)^\pm \gamma \rightarrow K^\pm \pi^\mp \pi^\pm$

Motivation

- **New Physics** models can affect the angular variables:

In SM, photon is dominantly *left-handed*:

$$m_s/m_b \sim 0.02$$

NP models (LRSM, MSSM) can have a significant *right-handed component*!
The decay $B^\pm_u \rightarrow (K^{*\pm}_{res})\gamma \rightarrow K^\pm \pi^\mp \pi^\pm$

- Measure the **up-down asymmetry**

$$A_{ud} \equiv \frac{\int_0^1 d\cos \theta \frac{d\Gamma}{d\cos \theta} - \int_{-1}^0 d\cos \theta \frac{d\Gamma}{d\cos \theta}}{\int_{-1}^1 d\cos \theta \frac{d\Gamma}{d\cos \theta}}$$

The plane of $K^- \pi^+ \pi^-$
The decay $B^\pm_u \rightarrow (K^*_\text{res})^\gamma \rightarrow K^\pm \pi^\mp \pi^\mp$

Observables

- Measure the **up-down asymmetry**

 $$A_{\text{ud}} \equiv \frac{\int_0^1 \text{d} \cos \theta \frac{d \Gamma}{d \cos \theta} - \int_{-1}^0 \text{d} \cos \theta \frac{d \Gamma}{d \cos \theta}}{\int_{-1}^1 \text{d} \cos \theta \frac{d \Gamma}{d \cos \theta}}$$

- Directly proportional to **photon polarisation** for a single resonance:

 $$\lambda_\gamma \equiv \frac{|c_R|^2 - |c_L|^2}{|c_R|^2 + |c_L|^2}$$

- Not possible to translate from A_{UD} to photon polarisation (for inclusive measurement)
The decay $B_u^\pm \rightarrow (K^*_{res})^\gamma \rightarrow K^{\pm} \pi^\mp \pi^\pm$

Analysis strategy

- Data sample: 2fb$^{-1}$ of 2012 data
- Mixture of cuts and multivariate techniques
- 2 Bins of K_{res} mass

Background subtracted

[LHCb-CONF-2013-009]
The decay $B_u^{\pm} \rightarrow (K_{res}^{*\pm}) \gamma \rightarrow K^{\pm} \pi^{\mp} \pi^{\pm}$

Analysis strategy

- Data sample: 2fb$^{-1}$ of 2012 data
- Mixture of cuts and multivariate techniques
- 2 Bins of K_{res} mass

Background subtracted

Signal
- combinatorial bkg
- missing pion
- partially reco.

[LHCb-CONF-2013-009]
The decay \(B_u^\pm \rightarrow (K_{res}^\ast)^\gamma \rightarrow K^\pm \pi^\mp \pi^\pm \)

Results

- The up-down asymmetry:
 \[A_{UD}^\pm = \frac{U^\pm - D^\pm}{U^\pm + D^\pm} \]

\[
\begin{align*}
 A^+ &= -0.084 \pm 0.026 \text{ (stat)} \, ^{+0.004}_{-0.003} \text{ (syst)}, \\
 A^- &= -0.086 \pm 0.025 \text{ (stat)} \pm 0.002 \text{ (syst)}. \\
\end{align*}
\]

\[A_{ud} = -0.085 \pm 0.019 \text{ (stat)} \pm 0.003 \text{ (syst)} \quad 4.6\sigma! \]

- Photons are polarised (strong evidence!)
- Parity violated.
The decay \(B_u^{\pm} \rightarrow (K_{res}^{*\pm})\gamma \rightarrow K^{\pm}\pi^{\mp}\pi^{\pm} \)

Results

- The **CP asymmetry**: \(A_{CP} = A_{CP}^{\text{raw}} - A_P - A_D + \Delta A_{CP}^{\text{raw}} \)
The decay \[B_u^\pm \rightarrow (K_{res}^\ast\pm)\gamma \rightarrow K^\pm \pi^\mp \pi^\pm \]

Results

- **The CP asymmetry:**
 \[A_{CP} = A_{CP}^{raw} - A_P - A_D + \Delta A_{CP}^{raw} \]

<table>
<thead>
<tr>
<th>Contribution</th>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_{CP}^{raw})</td>
<td>-0.022</td>
<td>0.015</td>
</tr>
<tr>
<td>(A_D) and (A_P)</td>
<td>0.013</td>
<td>0.008</td>
</tr>
<tr>
<td>(\Delta A_{CP}^{raw})</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td>Simulation parameters</td>
<td>0.000</td>
<td>±0.001</td>
</tr>
<tr>
<td>Fit model</td>
<td>0.000</td>
<td>0.002</td>
</tr>
</tbody>
</table>

\[A_{CP} = -0.007 \pm 0.015 \text{ (stat)} \pm 0.008 \text{ (syst)} \]

[LHCB-CONF-2013-009]
Summary

Summary

Radiative

\[B_{u}^{\pm} \rightarrow (K_{res}^{*\pm})\gamma \]

2 fb\(^{-1}\) analysed

- Non-zero \(A_{UD} \), with 4.6\(\sigma \)!
- No \(A_{CP} \) seen.

Semi-leptonic

\[B_{d}^{0} \rightarrow K^{*} \mu^{+}\mu^{-} \]

1 fb\(^{-1}\) analysed

- \(P_{S} \)'s discrepancy of 3.7\(\sigma \)!
- Other observables agree to SM

Leptonic

\[B_{s,d}^{0} \rightarrow \mu^{+}\mu^{-} \]

3 fb\(^{-1}\) analysed

- Observation in \(B_{s} \) channel (\(>5\sigma \)!
- \(B_{d} \) channel (\(<3\sigma \)

Looking forward for the upgrade!
Summary

• Only a few B decays covered here, but many recent results:

Very rare decays
- $B_{(s)} \rightarrow \mu \mu$ [3fb$^{-1}$/arXiv:1307.5024]
- $D \rightarrow \mu \mu$ [0.9fb$^{-1}$/arXiv:1305.5050]
- $K_s \rightarrow \mu \mu$ [1fb$^{-1}$/arXiv:1209.4029]
- $B \rightarrow 4\mu$ [1fb$^{-1}$/arXiv:1303.1092]
- $B^+ \rightarrow \pi^+ \mu \mu$ [1fb$^{-1}$/arXiv:1210.2645]

Angular an isospin analysis
- $B \rightarrow K^* \mu \mu$ [1fb$^{-1}$/arXiv:1308.1707, 1fb$^{-1}$/arXiv:1304.6325]
- $\Lambda_b \rightarrow \Lambda \mu \mu$ [1fb$^{-1}$/arXiv:1306.2577]
- $B_s \rightarrow \phi \mu \mu$ [1fb$^{-1}$/arXiv:1305.2168]
- $B \rightarrow K(\ast) \mu \mu$ [1fb$^{-1}$/arXiv:1205.3422]
- $\psi (4160)$ [3fb$^{-1}$/arXiv:1307.7595]

CP Asymmetries
- $B \rightarrow K^* \mu \mu$ [1fb$^{-1}$/arXiv:1210.4492]
- $B^+ \rightarrow K^+ \mu \mu$ [1fb$^{-1}$/arXiv:1308.1340]

No SM processes
- $B^+ \rightarrow X \mu^+ \mu^-$ [0.41fb$^{-1}$/arXiv:1201.5600]
- $B_{(s)} \rightarrow \mu e$ [1fb$^{-1}$/arXiv:1307.4889]
- $\tau \rightarrow 3\mu$, $\tau \rightarrow \mu \mu$ [1fb$^{-1}$/arXiv:1304.4518]

Radiative decays
- $B \rightarrow K^* \gamma$, $B_s \rightarrow \phi \gamma$ [1fb$^{-1}$/arXiv:1202.6267]
Extras
Rare decays: 3 groups

- **Radiative**
 \[B_{u}^{\pm} \rightarrow (K_{res}^{*\pm})\gamma \]
 - Electron or muon decay

- **Semi-leptonic**
 \[B_{d}^{0} \rightarrow K^{*} \mu^{+}\mu^{-} \]
 - Leptons and pions

- **Leptonic**
 \[B_{s,d}^{0} \rightarrow \mu^{+}\mu^{-} \]
 - Only leptons

Electroweak penguin

Diagram arrows:
- **Red** for electrons
- **Green** for muons
- **Blue** for leptons
The decay $B_d^0 \rightarrow K^{*0} \mu^+ \mu^-$

Motivation

- **New Physics** can alter

 a) Branching ratio

 $BR(B_d^0 \rightarrow K^{*0} \mu^+ \mu^-) \approx O(10^{-6})$ from B factories, CDF.
 In agreement with SM.

 b) Differential branching ratio: $d(BR)/dq^2$ (q - dimuon mass)

 c) Angular distributions:

 - 3 helicity angles $(\theta_L, \phi, \theta_K)$
The decay $B^0_d \rightarrow K^{*0} \mu^+ \mu^-$

Differential branching ratio

Good agreement with SM!

Theory predictions from Bobeth et al. [JHEP 1107:067 (2011)]

- Normalization of event yields to $B^0 \rightarrow J/\psi K^{*0}$
 \Rightarrow largest systematic uncertainty

- Uncertainties on hadronic parameters limit sensitivity

LHCb

Good agreement with SM!
The decay \(B_d^0 \rightarrow K^{*0} \mu^+ \mu^- \)

Motivation

- **Angular distributions** \((\theta_L, \phi, \theta_K)\)

 - Differential angular distribution can be written in terms of \(F_L\) and \(S_i\):
The decay $B_d^0 \rightarrow K^{*0} \mu^+ \mu^-$

Motivation

- Angular distributions $(\theta_L, \phi, \theta_K)$

 o) Differential angular distribution can be written in terms of F_L and S_i:

$$\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos \theta_L d\cos \theta_K d\phi dq^2} = \frac{3}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_L - F_L \cos^2 \theta_K \cos 2\theta_L + S_3 \sin^2 \theta_K \sin^2 \theta_L \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_L \cos \phi + S_5 \sin 2\theta_K \sin \theta_L \cos \phi + S_6 \sin^2 \theta_K \cos \theta_L + S_7 \sin 2\theta_K \sin \theta_L \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_L \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_L \sin 2\phi \right],$$

- Message:
 - Yield and angular distributions in q^2, give us F_L and S_i
 - F_L and S_i are functions of Wilson coefficients and form factors

[S. Descotes-Genon, T. Hurth, J. Matias, J. Virto, JHEP 05 (2013) 137]
[arXiv:1303.5794]
The decay $B_d^0 \rightarrow K^{*0} \mu^+ \mu^-$

Angular observables

• **Message:**
 - Yield and angular distributions, give us F_L and S_i
 - F_L and S_i are functions of Wilson coefficients and form factors

• There are **combinations** of F_L and S_i with **reduced form factor uncertainties**:

 $$P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1 - F_L)}}$$

• **First** measurement ever!

• **Complementary** to the existing measurements

[S. Descotes-Genon, T. Hurth, J. Matias, J. Virto, JHEP 05 (2013) 137]
[arXiv:1303.5794]
The decay $B^0_d \rightarrow K^{*0} \mu^+ \mu^-$

Angular observables **IMPROVED FOLDING!**

- $P_{4,6,8}'$ in agreement with SM
- **BUT:** P'_5 shows 3.7σ local discrepancy!

- Integrated over the region $1.0 < q^2 < 6.0$ GeV2/c4, the observed discrepancy is 2.5σ

References:

[JHEP 1308 (2013) 131]
[10.1103/PhysRevLett.111.191801]
The decay \(B_d^0 \rightarrow K^{*0} \mu^+ \mu^- \)

Angular observables \(P'_5 \)!

- Theory explains?

Wilson coefficient: \(C_9^{NP} < 0 \)!

\(Z' \) gauge boson?

2.3 Beyond Standard Model

We have proposed a simple \(Z' \) model [14] with couplings to left-handed quarks (with same phase as \(V_{tb} V_{ts}^* \) to avoid large contributions to \(\phi_3 \)) with flavour-changing couplings to down-type quarks and equal left and right handed couplings to charged leptons of order 0.1. The scale of the \(M_Z' \) is around 1-2 TeV to get \(C_9^{NP} = -1.5 \). An interesting implementation of our pattern for Wilson
New Observable: $\mathcal{B}(B_s^0 \to \mu^+\mu^-)/\mathcal{B}(B^0 \to \mu^+\mu^-)$

Sensitivity to New Physics

- Precise prediction in SM, MFV, and U(2)3 flavour sym. [Buras, 2003]:

$$\frac{\mathcal{B}(B^0 \to \ell^+\ell^-)}{\mathcal{B}(B_s^0 \to \ell^+\ell^-)} = \frac{\tau_{B^0}}{\tau_{B_s^0}} \frac{m_{B^0}}{m_{B_s^0}} \frac{F_{B^0}}{F_{B_s^0}} \left| \frac{V_{td}}{V_{ts}} \right|^2$$

- Cannot be deduced by simply taking the ratio of:

$\mathcal{B}(B_s^0 \to \mu^+\mu^-) \underset{\text{LHCb}}{=} (2.9^{+1.1}_{-1.0}) \times 10^{-9}$

$\mathcal{B}(B^0 \to \mu^+\mu^-) \underset{\text{LHCb}}{=} (3.7^{+2.5}_{-2.1}) \times 10^{-10}$

as these two measurements are correlated!

- Ratio will be provided by LHCb.
Implications of the very rare decay results

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Would point to</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{BR}(B_s \rightarrow \mu \mu) \neq \text{SM}$</td>
<td>Big enhancement from NP in the scalar sector, SUSY at high $\tan \beta$</td>
</tr>
<tr>
<td></td>
<td>$\text{BR}(B_s \rightarrow \mu \mu) \neq \text{SM}$</td>
</tr>
<tr>
<td></td>
<td>SUSY, ED’s, LHT, TC2</td>
</tr>
<tr>
<td>$\text{BR}(B_s \rightarrow \mu \mu) \approx \text{SM}$</td>
<td>Anything (\Rightarrow rule out regions of parameter space that predict sizable departures w.r.t. SM)</td>
</tr>
<tr>
<td>$\text{BR}(B_{sL} \rightarrow \mu \mu) \lesssim 10^{-10}$</td>
<td>NP in the scalar sector, but full MSSM ruled out. NMSSM (Higgs singlet) good candidate</td>
</tr>
<tr>
<td>$\text{BR}(B_s \rightarrow \mu \mu) / \text{BR}(B_d \rightarrow \mu \mu) \neq \text{SM}$</td>
<td>CMFV ruled out. New FCNC fully independent of CMK matrix (RPV-SUSY, ED’s, etc ...)</td>
</tr>
</tbody>
</table>
Rare decays in the theory

• The effective Hamiltonian (for $b \rightarrow s$)

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C_i' O_i') + h.c.$$

Wilson coefficients
(SHORT-scale effects)

Operators
(LONG-scale effects)

The operators O_i that are most sensitive to NP effects are

$$O_7 = \frac{m_b}{e} (\bar{s} \sigma_{\mu\nu} P_R b) F^{\mu\nu},$$

$$O_9 = (\bar{s} \gamma_{\mu} P_L b)(\bar{\ell} \gamma^\mu \ell),$$

$$O_5 = m_b (\bar{s} P_R b)(\bar{\ell} \ell),$$

$$O_8 = \frac{g m_b}{e^2} (\bar{s} \sigma_{\mu\nu} T^a P_R b) G^{\mu\nu a},$$

$$O_{10} = (\bar{s} \gamma_{\mu} P_L b)(\bar{\ell} \gamma^\mu \gamma_5 \ell),$$

$$O_P = m_b (\bar{s} P_R b)(\bar{\ell} \gamma_5 \ell),$$
The decay $B_d^0 \rightarrow K^{*0} \mu^+ \mu^-$

Analysis strategy

- Dataset: 2011 (1fb$^{-1}$)
- Select candidates in $K^*(\rightarrow K\pi)$ invariant mass range
- Reject dimuon resonances:
 - BDT against combinatorial bkg.
 - Topological info and PID
 - Trained with $B^0 \rightarrow K^*J/\Psi$ data for signal
 - Trained with sideband data for bkg.
 - Designed to be flat in angular acceptance
- Verify the analysis on $B^0 \rightarrow K^*J/\Psi$

[JHEP 1308 (2013) 131]
[10.1103/PhysRevLett.111.191801]
The decay $B^0_d \rightarrow K^{*0} \mu^+ \mu^-$

Analysis strategy

- Analysis done in 6 bins in q^2 from $0.1 < q^2 < 19 \text{ GeV}^2/c^4$
 - With 883 signal candidates (1fb$^{-1}$)

- Peaking backgrounds reduced to negligible level!

[JHEP 1308 (2013) 131] [10.1103/PhysRevLett.111.191801]
The decay $B_d^0 \rightarrow K^{*0} \mu^+ \mu^-$

Angular observables

$A_{FB} = \frac{4}{3} S_6$

In the SM, A_{FB} changes sign as function of q^2. The zero crossing-point is free of hadronic uncertainties:

→ First measurement of the zero-crossing point in A_{FB}: $q_0^2 = 4.9 \pm 0.9 \text{ GeV}^2/c^4$

Good agreement with SM!